Planar Lipid Bilayer Workstation (BLM)

Planar Lipid Bilayer Workstation (BLM)

The Planar Lipid Bilayer (BLM) Workstation from Warner Instruments integrates every significant component required for the assembly of a working BLM rig. This unique device allows the user to quickly get up to speed in performing research using this powerful technology.

  • Complete facility for Planar Lipid Bilayer recording
  • Simple and integrated design
  • Integrated instrumentation
  • Popular data acquisition packages
  • Optional power line conditioning
  • Bilayer Thermocycler available!
  • Available on-site setup and training!

Item# Description U.S. List Price Quantity
64-0452A (BLM-WS-A) Planar Lipid Bilayer Workstation with Active Table
64-0452P (BLM-WS-P) Planar Lipid Bilayer Workstation with Passive Table
98-5687 pClamp 10 software, required for use with DigiData
98-5692 DigiData 1550B digitizer, HumSilencer capability on 1 channel
64-0083 OST-1 On-Site Setup and Training - Flat Rate (Add 1 Day Travel)
64-0450 (BLM-TC) Bilayer thermocycler (requires bilayer chamber and cup)
64-0024 CM-1/10 Single Channel Simulator with 10 pF Membrane
64-0025 CM-1/100 Single Channel Simulator with 100 pF Membrane
64-0026 CM-3/10 Single Channel Variable Simulator with 10 pF Membrane
64-0027 CM-3/100 Single Channel Variable Simulator with 100 pF Membrane
64-0455 (PV-830) Power Line Conditioner
1000 VA, 120 VAC 60HZ
64-0456 (PV-830CE) Power Line Conditioner 1000 VA, 220 VAC 50/60HZ
64-1803 Binocular Zoom Stereo Microscope, 0.8-5.0x zoom, with Boom Stand
64-0404 CP13A-150 13 mm Polystyrene Cuvette with 150 µm Aperture
64-0402 CP13A-250 13 mm Polystyrene Cuvette with 250 µm Aperture
64-0410 CD13A-150 13 mm Delrin Cuvette with 150 µm Aperture
64-0409 CD13A-200 13 mm Delrin Cuvette with 200 µm Aperture
64-0408 CD13A-250 13 mm Delrin Cuvette with 250 µm Aperture
64-0416 CF13A-150 13 mm Polysulfone Cuvette with 150 µm Aperture
64-0415 CF13A-200 13 mm Polysulfone Cuvette with 200 µm Aperture
64-0414 CF13A-250 13 mm Polysulfone Cuvette with 250 µm Aperture
64-0453 (BCH-M22) Bilayer chamber, 3.0 ml working volume, with stirbar, without cuvette
64-0407 CP22A-150 22 mm Polystyrene Cuvette with 150 µm Aperture
64-0406 CP22A-200 22 mm Polystyrene Cuvette with 200 µm Aperture
64-0405 CP22A-250 22 mm Polystyrene Cuvette with 250 µm Aperture
64-0413 CD22A-150 22 mm Delrin Cuvette with 150 µm Aperture
64-0412 CD22A-200 22 mm Delrin Cuvette with 200 µm Aperture
64-0411 CD22A-250 22 mm Delrin Cuvette with 250 µm Aperture
64-0419 CF22A-150 22 mm Polysulfone Cuvette with 150 µm Aperture
64-0418 CF22A-200 22 mm Polysulfone Cuvette with 200 µm Aperture
64-0417 CF22A-250 22 mm Polysulfone Cuvette with 250 µm Aperture
64-0451 (BCH-M13) Bilayer chamber, 1.0 ml working volume, with stirbar, without cuvette
64-0420 MAG-13 Stir Bars 2x5mm for 13mm Cuvettes. pkg. of 5
64-0421 MAG-22 Stir Bars 2x7mm for 22mm Cuvettes, pkg. of 5
64-1729 (BCH-13TH) Replacement thumb screw and rubber plug for BCH-13
64-0063 FC-1 Faraday Cage with Passive Vibration Isolation Table (includes hand pump)
64-0064 FC-2 Faraday Cage with Active Vibration Isolation Table (requires pressurized air)
64-0432 (BC-535) Bilayer clamp amplifier with resistive headstage
64-0050 LPF-8 Bessel Filter, Low Pass Filter/DC Amplifier, Single Channel Rack Mount, Rack mount hardware supplied with LPF-8. Specify line operating voltage if other than 100-130 VAC
64-0076 SUNSTIR-3 Complete SunStir-3 System, Includes Sun-1 Lamp, Spin-2 Stirrer and SunStir Controller
64-0431 (BPS-2) Bilayer perfusion system
64-0435 (HST-1) Headstage holder system for bilayer
64-0070 RAC-14 Instrument Rack
64-0067 BLM-ST Bilayer Starter Kit
Login for U.S. Pricing

The Planar Lipid Bilayer Workstation is comprised of:

  • FC Series: Faraday cage and vibration isolation table (manufactured expressly for Warner Instruments by Kinetic Systems)
  • BC-535: Bilayer Clamp Amplifier
  • LPF-8: 8-pole Bessel filter
  • SUNStir-3: Integrated system comprised of a SUNStir rack-mount controller, SUN-1 halogen lamp, and SPIN-2 bilayer stirplate
  • BPS-2: Bilayer perfusion system
  • HST-1: Headstage holder system
  • RAC-14: Table top equipment rack
  • BLM-ST: Bilayer Starter Kit

Additional items needed to complete the Workstation include bilayer cups and chambers (either the classic or perfusion style), data acquisition hardware/software, and a computer. Due to the extensive variety offered, cups and chambers are ordered separately.

The Bilayer workstation supports the use of all data acquisition systems and we offer pClamp from Molecular Devices (Union City, CA). You may purchase your acquisition system directly from the vendor or from us at no additional charge to you. (Technical support and warranty, however, remain through Molecular Devices.)

When placing an order you will need to select:

  • Style (active or passive) of vibration isolation table desired
  • Style (classic or perfusion) of bilayer chamber desired
  • Material (polystyrene, Delrin, or polysulfone) of bilayer cup desired
  • Diameter (150, 200, 250 µm, or custom) of the cup aperture desired

Additional optional items include:

BLM-TC - Planar Lipid Bilayer Thermocycler. Temperature control for the bilayer!
On-site setup and training - Available worldwide
ZM-180 -Stereo zoom microscope for viewing the membrane
CM-3 - A variable value single channel simulator.
PV-830 - Power line conditioner available for both 110 and 220 V applications
Starter Kit - Includes red sable artist's dotting brushes, glass capillary tubing, PE tubing, Ag/AgCl wire, BNC's, grounding cables, micro stirbars, and rubber matting for traction control of the bilayer chamber.

A fully assembled Planar Lipid Bilayer Workstation from Warner Instruments includes everything you need, except the computer, for performing research using this powerful technology.

Specifications
  1. Vesicle fusion to planar membranes is enhanced by cholesterol and low temperature
    Lee DE, Lew MG, Woodbury DJ
    Chem Phys Lipids. 2013 Jan;166:45-54. doi: 10.1016
  2. Model-based prediction of the alpha-hemolysin structure in the hexameric state
    Furini S, Domene C, Rossi M, Tartagni M, Cavalcanti S
    Biophys J. 2008 Sep;95(5):2265-74. Epub 2008 May 23
  3. Synthesis-enabled functional group deletions reveal key underpinnings of amphotericin B ion channel and antifungal activities
    Palacios DS, Dailey I, Siebert DM, Wilcock BC, Burke MD
    Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6733-8
  4. Cys-Cys cross-linking shows contact between the N-terminus of lethal factor and Phe427 of the anthrax toxin pore
    Janowiak BE, Jennings-Antipov LD, Collier RJ
    Biochemistry. 2011 May 3;50(17):3512-6
  5. Identification and experimental verification of a novel family of bacterial cyclic nucleotide-gated (bCNG) ion channels
    Caldwell DB, Malcolm HR, Elmore DE, Maurer JA
    Biochim Biophys Acta. 2010 Sep;1798(9):1750-6
  6. The patch-clamp and planar lipid bilayer techniques: powerful and versatile tools to investigate the CFTR Cl- channel
    Sheppard DN, Gray MA, Gong X, Sohma Y, Kogan I, Benos DJ, Scott-Ward TS, Chen JH, Li H, Cai Z, Gupta J, Li C, Ramjeesingh M, Berdiev BK, Ismailov II, Bear CE, Hwang TC, Linsdell P, Hug MJ
    J Cyst Fibros. 2004 Aug;3 Suppl 2:101-8
  7. Photopolymerization of mixed monolayers and black lipid membranes containing gramicidin A and diacetylenic phospholipids
    Daly SM, Heffernan LA, Barger WR, Shenoy DK
    Langmuir. 2006 Jan 31;22(3):1215-22
  8. Differentially distributed IP3 receptors and Ca2+ signaling in rod bipolar cells
    Koulen P, Wei J, Madry C, Liu J, Nixon E
    Invest Ophthalmol Vis Sci. 2005 Jan;46(1):292-8
  9. Hydroxylated Xestospongins Block Inositol-1,4,5-trisphosphate-Induced Ca2+ Release and Sensitize Ca2+-Induced Ca2+ Release Mediated by Ryanodine Receptors
    Ta TA, Feng W, Molinski TF, Pessah IN
    Mol Pharmacol. 2006 Feb;69(2):532-8
  10. Structural and functional characterization of the nitrite channel NirC from Salmonella typhimurium
    Lü W, Schwarzer NJ, Du J, Gerbig-Smentek E, Andrade SL, Einsle O
    Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18395-400
  11. ORF8a of SARS-CoV forms an ion channel: Experiments and molecular dynamics simulations
    Chen CC, Krüger J, Sramala I, Hsu HJ, Henklein P, Chen YM, Fischer WB
    Biochim Biophys Acta. 2011 Feb;1808(2):572-9. doi: 10.1016
  12. Three reversible and controllable discrete steps of channel gating of a viral DNA packaging motor
    Geng J, Fang H, Haque F, Zhang L, Guo P
    Biomaterials. 2011 Nov;32(32):8234-42. doi: 10.1016
  13. An involvement of yeast peroxisomal channels in transmembrane transfer of glyoxylate cycle intermediates
    Antonenkov VD, Mindthoff S, Grunau S, Erdmann R, Hiltunen JK
    Int J Biochem Cell Biol. 2009 Dec;41(12):2546-54. doi: 10.1016
  14. Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2
    Anyatonwu GI, Estrada M, Tian X, Somlo S, Ehrlich BE
    Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6454-9
  15. Methanethiosulfonate ethylammonium block of amine currents through the ryanodine receptor reveals single pore architecture
    Anyatonwu GI, Buck ED, Ehrlich BE
    J Biol Chem. 2003 Nov 14;278(46):45528-38
  16. Channelforming activities of peroxisomal membrane proteins from the yeast Saccharomyces cerevisiae
    Grunau S, Mindthoff S, Rottensteiner H, Sormunen RT, Hiltunen JK, Erdmann R, Antonenkov VD
    FEBS J. 2009 Mar;276(6):1698-708. doi: 10.1111
  17. Self-assembling subnanometer pores with unusual mass-transport properties
    Zhou X, Liu G, Yamato K, Shen Y, Cheng R, Wei X, Bai W, Gao Y, Li H, Liu Y, Liu F, Czajkowsky DM, Wang J, Dabney MJ, Cai Z, Hu J, Bright FV, He L, Zeng XC, Shao Z, Gong B
    Nat Commun. 2012 Jul 17;3:949. doi: 10.1038
  18. Pxmp2 Is a Channel-Forming Protein in Mammalian Peroxisomal Membrane
    Rokka A, Antonenkov VD, Soininen R, Immonen HL, Pirilä PL, Bergmann U, Sormunen RT, Weckström M, Benz R, Hiltunen JK
    PLoS One. 2009;4(4):e5090. Epub 2009 Apr 7
  19. Effect of 2-Fluorohistidine Labeling of the Anthrax Protective Antigen on Stability, Pore Formation, and Translocation
    Wimalasena DS, Cramer JC, Janowiak BE, Juris SJ, Melnyk RA, Anderson DE, Kirk KL, Collier RJ, Bann JG
    Biochemistry. 2007 Dec 25;46(51):14928-36. Epub 2007 Nov 29
  20. Controlled delivery of membrane proteins to artificial lipid bilayers by nystatin-ergosterol modulated vesicle fusion
    de Planque MR, de Planque MR, Mendes GP, Zagnoni M, Sandison ME, Fisher KH, Berry RM, Watts A, Morgan H
    IEE Proc Nanobiotechnol. 2006 Apr;153(2):21-30
DOCUMENT DESCRIPTION
Warner Bilayer Workstation brochure (rev 060601).pdfWarner Bilayer Workstation Brochure
CM-Cable (070823).pdfCM-Cable Manual
FC Series (040326).pdfFC Series User's Manual
LPF-8 manual.pdfLPF-8 Instruction Manual
SPIN-2 (2005.08.16).pdfSPIN-2 User's Manual
SUNStir-3 (050816).pdfSUNStir-3 User's Manual
sole source arguments in favor of the planar lipid bilayer workstation (060331).pdfArguments in Favor of the Planar Lipid Bilayer Workstation (BLM)
Connecting the BC-535 to pClamp.pdfConnecting the 535 to pClamp