Fiber Optic Micro-catheter Pressure Transducers

300 micron & 640 micron

SMALL VESSEL • INTRACRANIAL • INTRAOCULAR • URO-GENITAL • AND MORE!

The FISO Advantage

Micro – No need for high-priced solid-state pressure catheters when a mass manufactured glass fiber is inexpensive and small.

Low Noise – Because a beam of light is inherently quiet, there is no EMI/RF from the catheter itself interfering with the pressure signal. It is also uninfluenced by high EMI/RF environment. The sensors can be made long enough to be used for MRI image gating.

Accurate – Due to the speed of light, the frequency response is completely dependent on the signal conditioner. The fast 15 kHz FISO-LS Conditioner ensures you will obtain high fidelity pressure traces.

Tip Sensor – The sensor is located at the tip of the fiber, allowing the measurement of the target signal with no signal artifacts due to vessel wall or cardiac wall contact with the sensor.

Ease-of Use – Pre-calibrated pressure sensor with data stored in the smart chip allows for plug-and-play ability.

Proven – over 200,000 sensors in the field since 2006!

The Dicrotic Notch, difficult to see clearly with traditional fluid-filled sensors, is easy to identify with the FISO-LS fiber optic pressure sensor.
Microcatheter Pressure Transducers

Applications include:

- **Neuroscience** – Intracranial pressure; blast wave and impact trauma
- **Cardiovascular** – Left ventricular pressure, arterial or venous BP
- **Ocular Tonometry** – Non-invasive intraocular pressure tonometry
- **Intraocular Pressure** – Invasive intraocular pressure
- **Urology** - Bladder/Ureter pressure
- **Spine** - Intradiscal pressure
- **Bone** - Intramedullary pressure
- **MRI Gating** - Arterial blood pressure or left ventricular pressure for image gating

The FISO-LS series catheters were designed as semi-disposable for multi-use applications in the life-sciences and small animal research. Unlike its disposable counterpart in clinical applications, this sensor is more robust with a protected tip. The standard transducers have 1 meter of nylon sheathing to protect the fiber, where the 10 m transducers have 9.3 to 9.8 m of nylon sheath, further protecting the glass fiber. With proper use and care the sensor can be used many times.

<table>
<thead>
<tr>
<th>Order #</th>
<th>Model</th>
<th>Description</th>
<th>Bare Fiber Length</th>
<th>Total Length</th>
<th>Pressure Range</th>
<th>Tip Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-0706</td>
<td>FISO-LS-PT9-10</td>
<td>Physiological Microcatheter Pressure Sensor, .9 Fr</td>
<td>20 cm</td>
<td>1.2 m</td>
<td>± 300 mmHg</td>
<td>300 µm</td>
</tr>
<tr>
<td>75-0715</td>
<td>FISO-LS-PT9-20</td>
<td>MRI Microcatheter Pressure Sensor, .9 Fr</td>
<td>20 cm</td>
<td>10 m</td>
<td>± 300 mmHg</td>
<td>300 µm</td>
</tr>
<tr>
<td>75-0707</td>
<td>FISO-LS-2FR-10</td>
<td>Physiological Microcatheter Pressure Sensor, 2 Fr</td>
<td>70 cm</td>
<td>1.7 m</td>
<td>± 300 mmHg</td>
<td>640 µm</td>
</tr>
<tr>
<td>75-0716</td>
<td>FISO-LS-2FR-20</td>
<td>MRI Microcatheter Pressure Sensor, 2 Fr</td>
<td>70 cm</td>
<td>10 m</td>
<td>± 300 mmHg</td>
<td>640 µm</td>
</tr>
<tr>
<td>75-0714</td>
<td>FISO-LS-2FR-30</td>
<td>High Pressure Microcatheter Pressure Sensor, 2 Fr</td>
<td>70 cm</td>
<td>1.7 m</td>
<td>0 to 10 bar</td>
<td>640 µm</td>
</tr>
</tbody>
</table>
How it Works

The **Fabry-Pérot etalon** was modeled over 100 years ago by two French Physicists, after whom it was named. The device is characterized by two parallel reflecting mirrors on either side of a transparent medium, where the distance between the mirrors is known as the etalon cavity length. The transmission characteristic for the F-P etalon has distinct transmission peaks in wavelength as a function of the cavity length, physically corresponding to resonances of the etalon. FISO’s pressure sensors are a flexible embodiment of the F-P etalon. As illustrated to the right, a deformable membrane is assembled over a vacuumeed cavity, thus forming a small drum-like structure. The sensing F-P cavity is located between the base of the drum and the flexible membrane. When pressure is applied, the membrane is deflected toward the bottom of the drum, thus reducing cavity length. After appropriate sensor calibration, completed at the factory, each etalon cavity length corresponds to a specific pressure value. The signal conditioner is designed to determine the cavity length to the nanometer level, providing the researcher with an extremely accurate and repeatable pressure measurement system.

All-In-One Preclinical Pressure Test Solution

The entire solution comprises: an animal-use catheter, the signal conditioner in power supply housing (FPI-LS with EVO chassis) control & acquisition software, and optional extension cables and data acquisition system. Computer interface is supplied by the researcher.
Evolution Software

Configure and Control the Reading Instrument

The most common set-up for users will be to configure the 0-5V analog output level to the pressure range of interest, but the end-user will also enjoy the ability to visually confirm proper communication between catheters and the instrument.

Simple Monitoring & Real-Time Graphing

Users may easily choose between reading the actual measurement, or plot (both in real-time) with user specified screen refresh rates and graphing options.

Export Data

While users may generally prefer to use the 15kHz analog output on the FPI-LS, data may also be recorded and saved in multiple file formats.

Computer System Compatibility

On Windows XP SP3:
2 GHz CPU (like Pentium 4); 1 GB of RAM (DDR2)

On Windows 7 64 bits:
2 GHz CPU (dual core); 2 GB of RAM
Module and Chassis Specifications

FPI-LS Module

This “signal conditioning” module is both the light source and receiver of the fiber optic measurement system. The FPI-LS converts the optical signal to a pressure reading and requires no external amplification box. The catheter’s optical cable plugs directly into the FPI-LS. Alternatively, the catheter can be plugged into a remote connection box with extension cable should the researcher not have the space proximal to the point of measurement for the signal conditioner and chassis. Each FPI-LS module is supplied with an analog output cable for interfacing with standard Data Acquisition Hardware with BNC inputs.

Module and Chassis Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FPI-LS and the FISO Catheter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Range</td>
<td>± 300 mmHg</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 3 mmHg</td>
</tr>
<tr>
<td>Resolution</td>
<td>± 0.3 mmHg, filter setting dependent</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>10° to 50°C</td>
</tr>
<tr>
<td>Sampling Rate:</td>
<td></td>
</tr>
<tr>
<td>Analog Output</td>
<td>15,000 Hz</td>
</tr>
<tr>
<td>Digital Output</td>
<td>Up to 5,000 Hz settable via Evolution Software</td>
</tr>
<tr>
<td>Data Output</td>
<td>Digital USB 2.0 / Analog 0-5V 16 bit</td>
</tr>
</tbody>
</table>

Ordering - Signal Conditioner

<table>
<thead>
<tr>
<th>Order #</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-0704</td>
<td>FPI-LS-10</td>
<td>FISO-LS Signal Conditioner 1 Channel, 15 kHz Analog Output</td>
</tr>
<tr>
<td>75-0713</td>
<td>CFO-LS-M3</td>
<td>FISO-LS Catheter Extension Cable and Remote Connect Adapter</td>
</tr>
</tbody>
</table>
EVO Chassis

The bench-top chassis is provided with the Power/Interface module, Evolution data acquisition and instrument control software, a USB cable, power supply, and module removal tool.

Modular in design, researchers can add FPI-LS modules, and thus more channels, as time and budgets permit.

Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>EVO-SD-2</th>
<th>EVO-SD-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>USB 2.0</td>
<td>USB 2.0</td>
</tr>
<tr>
<td>Data Logging Memory</td>
<td>Via USB connected computer running Evolution Software, up to 5 kHz</td>
<td>Via USB connected computer running Evolution Software, up to 5 kHz</td>
</tr>
<tr>
<td>Number of FPI Modules</td>
<td>Up to 2</td>
<td>Up to 5</td>
</tr>
<tr>
<td>Expansion Chassis</td>
<td>24VDC 70W</td>
<td>24VDC 70W</td>
</tr>
<tr>
<td>Size (Bench space)</td>
<td>19.5 x 15.8 x 18.2 cm</td>
<td>19.5 x 15.8 x 18.2 cm</td>
</tr>
</tbody>
</table>

Ordering - Chassis

<table>
<thead>
<tr>
<th>Order #</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-0700</td>
<td>EVO-SD-2</td>
<td>FISO Evolution Chassis 2 Channel</td>
</tr>
<tr>
<td>75-0701</td>
<td>EVO-SD-5</td>
<td>FISO Evolution Chassis 5 Channel</td>
</tr>
</tbody>
</table>
Publication List

Cardiovascular Applications:

Intracranial Pressure, Blast Wave & Impact Trauma:

Other Applications:

3. Temperature and pressure fiber-optic sensors applied to minimally invasive diagnostics and therapies. In Biomedical Optics 2006 (pp. 608306-608306). International Society for Optics and Photonics.

Ultra-Miniature Pressure Monitoring System
Exclusively from FISO-LS LIFE SCIENCE SERIES

Insertion Points

- Intra Ocular
- Intra Cranial
- Respiratory
- Left or Right Ventrical
- Arterial Vasculature
- Urogenital
- Gastro Intestinal

To order call 1-508-893-8999 email techsupport@harvardapparatus.com web www.harvardapparatus.com
Worldwide Harvard Apparatus solutions are available from a wide network of distribution partners. Please contact us or visit www.harvardapparatus.com to find a distributor near you.

Note: Products in this catalog are for Research Use Only. They are not for use on humans unless proper investigational device regulations have been followed.

Harvard is a registered trademark of Harvard University. The marks Harvard Apparatus and Harvard Bioscience are being used pursuant to a license agreement between Harvard University and Harvard Bioscience, Inc.